• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Beykoz
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Beykoz
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identifying Effective Variables Using Mutual Information and Building Predictive Models of Sulfur Dioxide Concentration with Support Vector Machines

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2010

Yazar

Sakar, C. Okan
Kursun, Olcay
Ozdemir, Huseyin
Demir, Goksel
Yalcin, Senay

Üst veri

Tüm öğe kaydını göster

Özet

Sulfur dioxide (SO2) is an issue of increasing public concern due to its recognized adverse effects on human health. Therefore, accurate SO2 prediction models are very important tools in developing public warning strategies. The goal of this study is to identify the relevance of meteorological and air pollutant variables using a classical and widely used measure of dependence, Shannon's Mutual Information (MI), and to build an accurate SO, prediction model using the relevant variables as inputs. Specifically, features ranked by MI measure are tested on how much joint predictive power they have of the target using a popular machine learning tool, support vector machines (SVM), and in comparison to multilayer perceptron (MLP), which is the most commonly used machine learning tool in previous studies for the prediction and analysis of air pollutants. It was found that the SVM model gave a higher correlation coefficient (r) and less root mean squared error (RMSE) than MLP for both test and validation sets. The predictive model used 6 input variables for both data sets as the relevant features for maximum SO, concentration prediction at time t+1, which are the average SO,, maximum SO2, outdoor temperature (OT), average nitrogen dioxide (NO2), average ozone (O-3), and average wind speed at time t. The results of this study indicate that MI can be used efficiently in determining the importance of input variables in the prediction of SO2 concentration and SVM is a popular machine learning tool well suited for use in air pollution modeling.

Kaynak

Ekoloji

Cilt

19

Sayı

76

Bağlantı

https://doi.org/10.5053/ekoloji.2010.7612
https://hdl.handle.net/20.500.12879/101

Koleksiyonlar

  • WoS İndeksli Yayınlar Koleksiyonu [36]
  • Yayın Koleksiyonu (Tüm Bölümler) [10]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Beykoz

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber || Kütüphane || Beykoz Üniversitesi || OAI-PMH ||

Beykoz Üniversitesi, İstanbul, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Beykoz Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Beykoz:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.