• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Beykoz
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@Beykoz
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Binary particle swarm optimization as a detection tool for influential subsets in linear regression

Access

info:eu-repo/semantics/closedAccess

Date

2020

Author

Deliorman, Gokce
Inan, D.

Metadata

Show full item record

Abstract

An influential observation is any point that has a huge effect on the coefficients of a regression line fitting the data. The presence of such observations in the data set reduces the sensitivity and validity of the statistical analysis. In the literature there are many methods used for identifying influential observations. However, many of those methods are highly influenced by masking and swamping effects and require distributional assumptions. Especially in the presence of influential subsets most of these methods are insufficient to detect these observations. This study aims to develop a new diagnostic tool for identifying influential observations using the meta-heuristic binary particle swarm optimization algorithm. This proposed approach does not require any distributional assumptions and also not affected by masking and swamping effects as the known methods. The performance of the proposed method is analyzed via simulations and real data set applications.

Source

Journal Of Applied Statistics

URI

https://doi.org/10.1080/02664763.2020.1779196
https://hdl.handle.net/20.500.12879/109

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [32]
  • WoS İndeksli Yayınlar Koleksiyonu [36]
  • Yazılım Mühendisliği Bölümü Koleksiyonu [2]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Beykoz

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || Beykoz University || OAI-PMH ||

Beykoz University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
Beykoz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Beykoz:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.